If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y+y^2=60
We move all terms to the left:
4y+y^2-(60)=0
a = 1; b = 4; c = -60;
Δ = b2-4ac
Δ = 42-4·1·(-60)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-16}{2*1}=\frac{-20}{2} =-10 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+16}{2*1}=\frac{12}{2} =6 $
| x+(x*0.1)=48500 | | -11y=8-8y | | 5.x+2.3.x-5=-20 | | x+x*0.1=48500 | | -7-6x=2-2x | | -9x+4=x+16 | | -9-(9x-6)=0 | | 9x+4=x+16 | | r^2+11r+32=8 | | -4+5.x=x+20 | | 3x-2(x-7)=28 | | (6/m)-8=16 | | -1+10y=-6+2y | | 4x-5=-6x-1 | | 4.x=x-(-12) | | 3x-39=9x-45 | | 4.x+1=x-8 | | z-16.98=-8.98 | | 9n+6=-426 | | 7+5m=-5-m | | 3x(2x+4=0 | | 9u+8=10 | | 6u-38=-7(u-2) | | 6d+7=-142 | | 18=-3x3+x | | 2x/5-x/1=x/15-10/3 | | 5(w-9)=7w-39 | | -6x+10=8(x-4) | | 1/3(4x-6)=6(1/3x-1/2)+8 | | 1/8x+1/3x+1/8=29/12 | | 7x-6=9x-10 | | 37+8=c |